Catalytic Asymmetric Hydrogenation of **Heteroaromatic Compounds, Indoles**

Ryoichi Kuwano,* Koji Sato, Takashi Kurokawa, Daisuke Karube, and Yoshihiko Ito*

> Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

> > Received April 12, 2000

Catalytic asymmetric hydrogenations of prochiral unsaturated compounds, 1 olefin, 2 ketone, 3 and imine, 4 have been intensively studied and are considered as a versatile method of creating a chiral carbon center.⁵ However, no highly enantioselective hydrogenation of heteroaromatic groups has so far been reported except that of 2-methylquinoxaline to our knowledge. Resonance stability of heteroaromatic compounds might impede the enantioselective hydrogenation, which may find potentially wide applicability in stereoselective organic synthesis.^{8,9} Herein, we describe the highly enantioselective hydrogenation of heteroaromatic compounds, indoles.

We recently disclosed that the rhodium complex generated from Rh(acac)(cod) and PPh3 is a good catalyst for the hydrogenation of five-membered heteroaromatic compounds.¹⁰ Thus chiral rhodium complexes prepared in situ from Rh(acac)(cod) and various commercially available chiral bisphosphines (1 mol %) were examined for asymmetric hydrogenation of N-acetyl-2butylindole (1a) at 60 °C for 2 h with 5.0 MPa of H₂ in 2-propanol (eq 1), resulting in non-enantioselective hydrogenation (0-1%)ee). 11 Fortunately, the successful asymmetric hydrogenation has been achieved by use of a trans-chelating chiral bisphosphine ligand, (S,S)-(R,R)-PhTRAP, 12,13 giving (R)-N-acetyl-2-butylin-

(3) For reviews, see: (a) Brunner, H. In *Stereoselective Synthesis*; Helmchen, G., Hofmann, R. W., Mulzer, J., Schaumann, E., Eds.; Theime: Stuttgart, 1996; Vol. 7, pp 3945–3966. (b) Ohkuma, T.; Noyori, R. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 1, pp 199–246.
(4) For reviews, see: (a) Martens, J. In Stereoselective Synthesis; Helmchen,

G., Hofmann, R. W., Mulzer, J., Schaumann, E., Eds.; Theime: Stuttgart, 1996; Vol. 7, pp 4199-4219. (b) Blaser, H.-U.; Springer, F. In Comprehensive

1996; Vol. 7, pp 4199–4219. (b) Blaser, H.-U.; Springer, F. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 1, pp 247–265.

(5) For examples, see: (a) Schreiber, S. L.; Kelly, S. E.; Porco, J. A., Jr.; Sammakia, T.; Suh, E. M. J. Am. Chem. Soc. 1988, 110, 6210–6218. (b) Kitamura, M.; Nagai, K.; Hsiao, Y.; Noyori, R. Tetrahedron Lett. 1990, 31, 549–542. (c) Taber, D. F.; Wang, Y. J. Am. Chem. Soc. 1997, 119, 22–26. (6) Bianchini, C.; Barbaro, P.; Scapacci, G.; Farnetti, E.; Graziani, M. Organometallics 1998, 17, 3308–3310.

(7) For resonance energy of heteroaromatic compounds, see: Bird, C. W. *Tetrahedron Lett.* **1992**, *48*, 335–340.

(8) For reviews of the hydrogenation of heteroaromatic compounds, see: (a) Keay, J. G. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I. Eds.; Pergamon: Oxford, 1991; Vol. 8, pp 579–602. (b) Gribble, G. W. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 8, pp 603–633. (c) Katritzky, A. R.; Rachwal, S.; Rachwal, B. *Tetrahedron* **1996**, *52*, 15031–15070.

(9) For examples, see: (a) Rossen, K.; Weissman, S. A.; Sager, J.; Reamer, R. A.; Askin, D.; Volante, R. P.; Reider, P. J. *Tetrahedron Lett.* **1995**, *36*, 6419–6422. (b) Gilchrist, T. L.; Graham, K.; Coulton, S. *Tetrahedron Lett.* **1995**, 36, 8693-8696.

(10) Kuwano, R.; Sato, K.; Ito, Y. Chem. Lett. 2000, 428-429.

doline (2a) with 85% ee (77% conversion). No reduction of the fused aromatic ring of 1a was observed.

On further investigation into the asymmetric hydrogenation, [Rh(nbd)₂]SbF₆ was found to be superior to Rh(acac)(cod) as catalyst precursor (Table 1). It is noted that addition of base is

Table 1. Catalytic Asymmetric Hydrogenation of $1a^a$

entry	base	$P(H_2)$, MPa	temp °C	convn, ^b %	ee, ^c %
1	none	5.0	60	trace	7 (S)
2	Et_3N	5.0	60	100	94 (R)
3	Cs_2CO_3	5.0	60	100	94 (R)
4	K_2CO_3	5.0	60	44	76(R)
5	pyridine	5.0	60	0	
6	Cs_2CO_3	1.0	60	100	92 (R)
7^d	Cs_2CO_3	10.0	60	100^{e}	93 (R)

^a Reactions were carried out in 2-propanol (2.0 mL) for 2 h. **1a** (0.5 mmol)/[Rh(nbd)₂]SbF₆/(S,S)-(R,R)-PhTRAP/base was 100/1.0/1.05/10 unless otherwise noted. ^b Determined by ¹H NMR analysis of crude product. ^c Determined by HPLC analysis with CHIRALPAK AD. ^d 1a/ $[Rh(nbd)_2]SbF_6/(S,S)-(R,R)-PhTRAP/Cs_2CO_3$ was 1000/1.0/1.1/10. The reaction was carried out for 20 h. e 92% isolated yield.

necessary for achievement of high enantioselectivity as well as high catalytic activity. The $[Rh(nbd)_2]SbF_6-(S,S)-(R,R)-PhTRAP$ catalyst scarcely promoted the hydrogenation in the absence of base, giving a trace of 2a with only 7% ee (S) (entry 1). Addition of 10 mol % of Et₃N or Cs₂CO₃ brought remarkable improvement of the enantioselectivity and catalytic activity (100% conversion, 94% ee (R)) (entries 2 and 3). 14 Both the enantioselectivity and catalytic activity were significantly dependent upon base: K2-CO₃ gave (R)-2a with 76% ee, and pyridine did not activate the cationic PhTRAP-rhodium complex at all (entries 4 and 5). The amount of Cs₂CO₃ did not affect the selectivity: 20 mol %, 94% ee; 1 mol %, 93% ee. It is possible to carry out the asymmetric hydrogenation at lower pressure (1.0 MPa) without significant decrease of the selectivity and reaction rate (entry 6). The amount of PhTRAP-rhodium complex can be reduced to 0.1 mol %, and the reaction was completed within 20 h to give (R)-2a of 93% ee in 92% isolated yield (entry 7).

Although 2-propanol has frequently been used as a hydrogen source in the transfer hydrogenation of unsaturated compounds

⁽¹⁾ For reviews, see: (a) Takaya, H.; Ohta, T.; Noyori, R. In *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; VCH Publishers: New York, 1994; pp 1–39. (b) Noyori, R. In *Asymmetric Catalysis in Organic Synthesis*; Wiley: New York, 1994; pp 16-94.

⁽²⁾ For reviews, see: (a) Pfaltz, A. In Stereoselective Synthesis; Helmchen, G., Hofmann, R. W., Mulzer, J., Schaumann, E., Eds.; Theime: Stuttgart, 1996; Vol. 7, pp 4334-4359. (b) Brown, J. M. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 1, pp 121–182. (c) Halterman, R. L. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 1, pp 183–195.

⁽¹¹⁾ Representative results of using commercially available chiral bisphosphines were as follows: (R)-BINAP, 1% ee (S): (R)-(S)-BPPFA, 0% ee; (2S,3S)-Chiraphos, 1% ee (S): (-)-(2R,3R)-DIOP, 0% ee; (2S,4S)-BPPM, 0% ee; (R,R)-Me-DuPHOS, 0% ee.

⁽¹²⁾ (S,S)-(R,R)-PhTRAP = (R,R)-2,2"-bis[(S)-(diphenylphosphino)ethyl]-1,1"-biferrocene.

^{(13) (}a) Sawamura, M.; Hamashima, H.; Ito, Y. Tetrahedron: Asymmetry 1991, 2, 593-596. (b) Sawamura, M.; Hamashima, H.; Sugawara, M.; Kuwano, R.; Ito, Y. Organometallics 1995, 14, 4549-4558.

⁽¹⁴⁾ We presume that a Rh(I)H complex is an active species for the asymmetric hydrogenation (see ref 10). The base additive possibly deprotonates from a cationic Rh(III)H2 complex, generating a neutral Rh(I)H complex. See: Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1976, 98, 2134-2143.

muon	28				
entry	y substrate	time h	product	yield ^b %	ee ^c %
1	Bu Ac 1b	2	Bu Ac 2b	91	91 ^d
2	Ph Ac 1c	1	Ph Ac 2c	91	87
3e	Ac Id	0.5	Ac 2d	95	95/
4	A _C 1e	2	F ₃ C Bu	94	94
5	Bu Ac 1f	2	Bu Ac 2f	84	92
6	F ₃ C N Ac 1g	2	F ₃ C N Bu Ac 2g	83	92
7	MeO Ac 1h	2	MeO Ac 2h	98	94
8	CO ₂ Me Boc 3	2	CO ₂ Me Boc 4	86	78 ^d

^a Reactions were carried out at 60 °C and 5.0 MPa of H₂ in 2-propanol (2.0 mL) unless otherwise noted. **1** or **3** (0.5 mmol)/ [Rh(nbd)₂]SbF₆/(S,S)-(R,R)-PhTRAP/Cs₂CO₃ was 100/1.0/1.05/10. ^b Isolated yield. ^c Determined by HPLC analysis with CHIRALPAK AD unless otherwise noted. ^d Determined by HPLC analysis with CHIRAL-CEL OD-H. ^e The reaction was carried out at 100 °C and 10.0 MPa. Et₃N was used instead of Cs₂CO₃. ^f Determined by HPLC analysis with CHIRALPAK AS.

using a transition metal complex, 15 such a possibility is ruled out by the experiment using H_2 and Rh(acac)(cod)-PhTRAP catalyst in 2-propanol- d_8 . No product resulting from D_2 addition was detected in GC-MS analysis. 16,17

A variety of 2-substituted indoles were hydrogenated into the corresponding indolines with high enantiomeric excesses in high yields (eq 2, Table 2). The hydrogenations of 2-isobutyl- and 2-phenylindole, **1b** and **1c**, proceeded with 91% ee and 87% ee, respectively (entries 1 and 2). With indole-2-carboxylate **1d**, the PhTRAP—rhodium complex failed in high asymmetric induction (79% ee) under the above conditions (60 °C, 5.0 MPa of H₂). Higher temperature and hydrogen pressure (100 °C, 10.0 MPa of H₂) were, however, favorable to the highly enantioselective

hydrogenation of **1d** (83% ee). Use of Et₃N instead of Cs₂CO₃ improved the enantioselectivity remarkably, providing (*S*)-**2d** with 95% ee (entry 3). The enantiomeric excess of **2** was little affected by the steric and electronic properties of the substituent on the fused aromatic ring of **1** (entries 4–7). The protective group on the nitrogen atom may play an important role in the enantioselection. *N*-Boc derivative **3** was converted into (*S*)-**4** with lower enantiomeric excess (entry 8). ¹⁸ Optically active 3-substituted indoline **6** could be obtained by use of the [Rh(nbd)₂]SbF₆–PhTRAP–Cs₂CO₃ catalyst, but the hydrogenation competed with the undesirable alcoholysis of **5** significantly (eq 3).

In summary, the catalytic asymmetric hydrogenation of indoles has been accomplished by use of the [Rh(nbd)₂]SbF₆—PhTRAP—base catalyst, providing a variety of optically active indolines with up to 95% ee. This is the first example of highly enantioselective hydrogenation of five-membered heteroaromatic compounds using asymmetric catalysis. Future work will be directed toward the development of highly enantioselective hydrogenation of other heteroaromatic compounds, pyrrole, furan, pyridine, etc.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan.

Supporting Information Available: Experimental procedures and compound characterization data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA001271C

(15) (a) Spogliarich, R.; Tencich, A.; Kaspar, J.; Graziani, M. J. Organomet. Chem. 1982, 240, 453–459. (b) Saburi, M.; Ohnuki, M.; Ogasawara, M.; Takahashi, T.; Uchida, Y. Tetrahedron Lett. 1992, 33, 5783–5786. (c) Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285–288. (d) Alonso, D. A.; Brandt, P.; Nordin, S. J. M.; Andersson, P. G. J. Am. Chem. Soc. 1999, 121, 9580–9588.

(16) The hydrogenation in 2-propanol- d_8 using the [Rh(nbd)₂]SbF₆—PhTRAP—Cs₂CO₃ catalyst also gave the product resulting from H₂ addition (confirmed by ¹H NMR analysis). However, the exchange of hydrogen for deuterium on the *N*-acetyl group was observed in this case.

(17) The reactions in other solvents also proceeded with high enantiose-lectivity and good catalyst activity: 92% conversion, 91% ee in toluene; 53% conversion, 87% ee in 1,2-dichloroethane; 52% conversion, 84% ee in THF. (18) The hydrogenation of 3 proceeded with 46% ee (S) under the best

conditions for the reduction of **1d** ([Rh(nbd)₂]SbF₆—PhTRAP—Et₃N catalyst, 100 °C, 10.0 MPa, 0.5 h).